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Abstract It is shown that the “massless chiral edge excitations” are an integral and univer-
sal aspect of the low energy dynamics of the ϑ vacuum that has historically gone unnoticed.
Within the SU(M + N)/S(U(M) × U(N)) non-linear sigma model we introduce an effec-
tive theory of “edge excitations” that fundamentally explains the quantum Hall effect. In
sharp contrast to the common beliefs in the field our results indicate that this macroscopic
quantization phenomenon is, in fact, a super universal strong coupling feature of the ϑ angle
with the replica limit M = N = 0 only playing a role of secondary importance. To demon-
strate super universality we revisit the large N expansion of the CPN−1 model. We obtain,
for the first time, explicit scaling results for the quantum Hall effect including quantum crit-
icality of the quantum Hall plateau transition. Consequently a scaling diagram is obtained
describing the cross-over between the weak coupling “instanton phase” and the strong cou-
pling “quantum Hall phase” of the large N theory. Our results are in accordance with the
“instanton picture” of the ϑ angle but fundamentally invalidate all the ideas, expectations
and conjectures that are based on the historical “large N picture.”

Keywords ϑ vacuum · Large N expansion · Instantons · ϑ renormalization · Massless
chiral edge excitations · Quantum Hall effect · Quantum criticality · Super universality

1 Introduction

1.1 Super Universality

In a series of investigations on the grassmannian SU(M +N)/S(U(M)×U(N)) non-linear
sigma model in two dimensions it was shown that the ϑ vacuum generally displays massless
excitations that propagate along the confining “edge” of the system [1–5]. This new aspect of
the sigma model has come in many ways as a welcome surprise. In applications to quantum
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spin liquids [6, 7], for example, the edge excitations describe the dynamics of the “dangling”
quantum spins located at the “edges” of the spin chain [4, 5]. In the context of quantum
Hall liquids [8–12], on the other hand, these excitations are identically the same as those
described by the theory of “chiral edge bosons” [2, 3]. Quite similar to the semiclassical
ideas that are popularly used for quantum Hall systems [13] one may formulate a percolating
network of “edge” excitations while ignoring all the other excitations in the problem. One
can then show that in the limit of large distances the network model is identically the same
as the original non linear sigma model [2, 3]. The “edge” of the ϑ vacuum is therefore
the key for resolving longstanding issues such as the cross-over between percolation and
localization which is known to complicate the experiment on scaling conducted on realistic
quantum Hall samples [14].

Massless chiral edge excitations furthermore lay the bridge between the ϑ angle concept
on the one hand, and the phenomenological approaches to the fractional quantum Hall effect
based on Chern-Simons gauge theory on the other [15–17]. This has led, amongst many
other things, to a complete Luttinger liquid theory of edge excitations that includes the
effects of disorder, the Coulomb interaction as well as the coupling of the theory to external
potentials [3].

These specific examples clearly indicate that the topological concept of a ϑ angle
is much richer and more profound than previously thought. Notice that the physics of
the “edge” would already be a useful advance even if its relevance was limited to the
two dimensional electron gas or quantum spin chains alone. This kind of knowledge be-
comes only more interesting, however, if it turns out that the quantum Hall effect has, in
fact, a much more general significance that eventually could shed some new light on the
strong coupling problems in QCD where the topological concept of a ϑ vacuum arose
first [18, 19]. Within the grassmannian sigma model one finds, for example, that the
SU(M + N) symmetry is spontaneously broken at the “edge” of the system whereas the
critical correlations along the “edge” are identically the same for all values of M and N [2].
These unexpected features have motivated several studies where the idea of super univer-
sality has emerged [4, 5, 20–23]. The essence of this idea is that the ϑ vacuum displays all
the basic aspects of the quantum Hall effect for all non-negative values of M and N . These
include not only the massless chiral edge excitations but also the existence of robust topolog-
ical quantum numbers that explain the precision and stability of the quantum Hall plateaus,
as well as the existence of gapless bulk excitations at ϑ = π that describe a quantum phase
transition between adjacent plateaus.

The statement of super universality is important because it explains in a natural manner
why completely different theories of the ϑ angle display the same physical phenomena.
It encompasses the concept of ordinary universality in critical phenomena phenomenology
which is a statement made on critical exponent values alone. Quantum criticality at ϑ = π

may in principle be different depending on the specific application of the ϑ angle that one is
interested in. This aspect of the problem is in many ways the same as quantum criticality in
2+ ε dimensions where each value of M and N is known to describe a different universality
class [24].

Several interesting examples of super universality have already emerged in recent years.
We mention, in particular, the Finkelstein approach to localization and interaction effects
[21, 22] which explains why the infinitely ranged Coulomb interaction does not affect the
basic phenomena of scaling as predicted by the free electron gas [27] and observed in the
experiment [28–31]. The Finkelstein approach, however, fundamentally alters our under-
standing of the quantum critical behavior of the electron gas. This behavior actually belongs
to a novel non-Fermi liquid universality class with a different meaning for the critical expo-
nents [21, 22, 25, 26] and characterized by a previously unrecognized interaction symmetry
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termed F invariance [1]. A second example is the Ambegaokar-Eckern-Schön model of the
Coulomb blockade [32, 33]. This theory of the ϑ angle is perhaps the simplest of all since it
involves a single abelian field variable in one dimension. Yet it shows all the richly complex
physics of quantum Hall liquids and quantum spin liquids [23].

1.2 Large N Expansion

In this investigation we embark on a third example of super universality, the large N expan-
sion of the CPN−1 model which is obtained from the grassmannian theory by putting M,N

equal to 1,N − 1. This specific case is interesting because it is one of view places in the
theory where the ϑ vacuum is accessible from the strong coupling side. Even though the
matter has been studied in detail and elaborated upon a long time ago [34–37], it turns out
that the physics of the “edge” is a source of unforseen and troublesome complexity that has
direct consequences for our understanding of the theory as a whole. We will show that the
large N steepest descend methodology, which is standardly performed for an infinite sys-
tem, misses all the subtle aforementioned features of the confining “edge” of the ϑ vacuum.
The historical papers on the subject mishandle the “massless chiral edge excitations” in the
problem and, hence, the most interesting aspect of the ϑ angle, the quantum Hall effect,
remained concealed. The large N analysis that follows is in many ways a completely novel
theory. It not only resolves many longstanding controversies on topological issues in both
quantum field theory [38] and condensed matter theory [39–49] but also demonstrates in an
unequivocal manner that the ϑ angle is, in fact, the fundamental theory of the quantum Hall
effect [8–12, 50].

To obtain the correct low energy dynamics of the ϑ angle, notably the quantum Hall ef-
fect, one must handle the large N steepest descend methodology very differently from what
has been done before. Since the massless “edge” excitations are distinctly different from
those of the “bulk” of the system they should be disentwined and studied separately. This
can in general been done because of their simple topological properties [2]. More specif-
ically, the “edge” excitations generally have a fractional topological charge whereas the
“bulk” excitations always carry a strictly integral topological charge. Separating the “edge”
from the “bulk” is therefore synonymous for separating the fractional topological sectors of
the theory from the integral sectors.

The crux of this investigation is the introduction of an effective theory of “edge” excita-
tions that is obtained by formally eliminating the “bulk” degrees of freedom. This effective
theory expresses the low energy dynamics of the ϑ vacuum in terms of two “physical ob-
servables” only. These two quantities have previously been identified as the longitudinal
conductance and Hall conductance respectively in the context of the disordered electron
gas [8–12, 50]. We present a comprehensive study of these physical quantities on both
the weak and the strong coupling side of the problem. The picture that emerges is pre-
cisely in accordance with the renormalization group ideas on the quantum Hall effect that
have originally been proposed on the basis of the semiclassical instanton methodology
alone [27, 51–53]. Unlike the previous situation, however, we now have—for the first time—
an explicit demonstration of the robust quantization of the Hall conductance together with
explicit scaling results for the quantum Hall plateau transition.

1.3 Outline of This Work

In order to properly account for the new physics associated with the “edge,” we will present
our findings for the large N expansion in a step by step manner. We start out, in Sect. 2, with
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a brief summary of the microscopic origins of the ϑ angle followed by a brief introduction
to subject of massless chiral edge excitations. In Sect. 3 we embark on the general question
of how to disentwine the massless edge excitations from the bulk degrees of freedom. The
effective theory of massless “edge” excitations is introduced in Sect. 3.4. This effective
theory leads directly to a generalized Thouless criterion for the quantum Hall effect which
relates the generation of a mass gap for bulk excitations to the insensitivity of the system to
changes in the boundary conditions. The argument is based on very general principles only
and therefore sets the stage for the concept of super universality.

After these preliminaries we specialize to the large N expansion of the CPN−1 model. In
Sect. 4 we elaborate on the results recently obtained from the instanton calculational tech-
nique [20] which is the starting point of the remainder of this paper. In Sect. 5 we review the
standard large N saddle point methodology and show that it conflicts with super universality.
We then point out, in Sect. 6, that the idea of the massless “edge” excitations fundamentally
alters the structure of the steepest descend methodology with direct consequences for the
“bulk” of the system. We evaluate the effective theory of massless chiral edge excitations
and obtain explicit scaling results for the quantum Hall effect and the quantum Hall plateau
transitions that were previously invisible. In Sect. 6.3 we elaborate on the physics of the
plateau transitions and show that they are a prototypical example of broad “conductance”
distributions in the quantum theory of metals. In Sect. 6.4 we show how the effective theory
of the “edge” can be used as a important check on the Levine-Libby-Pruisken argument for
de-localized or gapless “bulk” excitations at ϑ = π [8–12]. These excitations do exist in the
large N theory even though the transition is a first order one.

In Sect. 7 we embark on the cross-over between the weak and strong coupling phases of
the large N theory. We first show that the results of the large N steepest descend methodol-
ogy can in general be decomposed in a discrete set of topological sectors in complete accor-
dance with the semiclassical theory based on instantons [18, 19, 54–56]. We then show that
the “dilute instanton gas” expressions for the free energy and the renormalization group β

functions retain their general form in the entire range from weak coupling all the way down
to the strong coupling phase of the large N theory. The main results of this paper are sum-
marized by the renormalization group flow diagram of the “conductances” plotted in Fig. 4.
This paper ends (Sect. 8) with a summary of the results and a conclusion.

2 The ϑ Angle and Physics of the “Edge”

The non-linear sigma model representation of Anderson localization in two dimensions and
in a perpendicular magnetic field is discussed in detail in [50]. It involves the grassmannian
field variable Q with Q2 = 1M+N that can be written in a standard fashion as follows

Q = T −1�T. (1)

Here, T ∈ SU(M + N) and � denotes a diagonal matrix with M elements +1 and N ele-
ments −1

� =
(

1M 0
0 −1N

)
. (2)

The action of the electron gas reads

S[Q] = Sσ [Q] + πωρ

∫
d2x tr�Q, (3)
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Sσ [Q] = −1

8
g0

∫
d2x tr ∂μQ∂μQ + 1

8
σ 0

H

∫
d2x tr εμνQ∂μQ∂νQ. (4)

The dimensionless quantities g0 and σ 0
H are the mean field parameters for longitudinal con-

ductance and Hall conductance respectively in units of e2/h. The quantity ρ denotes the
density of electronic levels and ω the external frequency.

The success of the non-linear sigma model representation of Anderson localization ulti-
mately relies on our ability to evaluate the Kubo expressions for the macroscopic conduc-
tances. These quantities are usually defined for a fixed frequency ω and an arbitrarily large
sample size. They are most elegantly represented in terms of a background matrix field
t (x) ∈ SU(M + N) that varies slowly in space. The master formulae for the background
field action reads as follows

exp{−F + S ′
σ [t]} =

∫
D[Q] exp

{
Sσ [t−1Qt] + πωρ

∫
d2x tr�Q

}
. (5)

Here, F denotes the free energy and the action S ′[t] is the shift away from the equilibrium
distribution as a result of the background field insertion t (x). Provided t (x) satisfies the
classical equations of motion this action takes on the form of the sigma model itself

S ′
σ [t] = −1

8
g′(ω)

∫
d2x tr ∂μv∂μv + 1

8
σ ′

H (ω)

∫
d2x tr εμνv∂μv∂νv (6)

with v = t−1�t . This result is the only possible local action with at most two derivatives
that is compatible with the symmetries of the problem. One therefore expects that (6) has
a quite general significance that is independent of M and N . In particular, the quantities
of physical interest are g′(ω) and σ ′

H (ω) in (6) which in the replica limit M,N → 0 pre-
cisely correspond to the Kubo expressions for linear response averaged over the impurity
ensemble.

2.1 Spontaneous Symmetry Breaking at the “Edge”

The massless excitations along the “edge” of the ϑ vacuum were recognized first in [2, 3].
To understand this important aspect of the problem we consider the simplest possible sce-
nario of an electron gas in a strong perpendicular magnetic field such that the disordered
Landau bands are well separated. By taking the Fermi level EF inside a Landau gap then
both quantities g0 and ρ in (4) become zero as it should be. The mean field Hall conductance,
however, is strictly integer valued σ 0

H = k with k denoting the number of completely filled
Landau levels [50]. The action of (4) now arises solely from the one dimensional “edge” of
the system and we can write

S[Q] → Sgap[Q] = k

2

∮
dx trT ∂xT

−1� + πωρedge

∮
dx tr�Q. (7)

Here, we have made use of the fact that the topological charge can be written as an integral
along the edge

∮
according to

C[Q] = 1

16πi

∫
d2x tr εμνQ∂μQ∂νQ = 1

4πi

∮
dx trT ∂xT

−1�. (8)

The extra term with ρedge in (7) indicates that although there are no electronic levels near EF

in the bulk of the system there is nevertheless a finite density of “edge states” that carry the



Int J Theor Phys (2009) 48: 1736–1765 1741

Hall current. Surprisingly, this one dimensional theory is critical and exactly solvable [2]. It
can be shown that (7) is completely equivalent to the theory of chiral edge bosons with the
drift velocity vd of the chiral edge electrons given by vd = k/2πρedge [3]. Some important
correlations are as follows [2]

〈Q〉edge = � (9)

indicating that the SU(M + N) symmetry is spontaneously broken at the edge of the ϑ

vacuum. Furthermore

〈Q+−
αβ (x)Q−+

βα (x ′)〉edge = 4ϑ(x ′ − x)e−ω(x′−x)/vd (10)

where Q+−
αβ and Q−+

αβ denote the M × N components in the off-diagonal blocks and ϑ(x)

is the Heaviside step function. The remarkable and surprising feature of these critical edge
correlations is that they are completely independent of M and N . Moreover, if we interpret
the edge coordinate x as the imaginary time τ then one recognizes (7) as the bosonic path
integral of an SU(M + N) spin with quantum number s = k/2 in a magnetic field B =
ρedgeω [4].

Next, to compute the conductances we go back to our master formulae of (5) and (6) and
write

exp{−F + S ′
σ [t]} =

∫
D[Q] exp

{
Sσ [t−1Qt] + πωρ

∮
dx tr�Q

}

=
∫

D[Q] exp

{
Sgap[Q] + k

2

∮
dx tr t∂xt

−1Q

}
. (11)

We immediately obtain

S ′
σ [t] = k

2

∮
dx tr t∂x t

−1〈Q〉edge = 2πikC[v] (12)

where we have used (8) and (9). The conductance parameters are therefore independent of
M and N and given by

g′(ω) = 0, σ ′
H (ω) = k. (13)

We see that the quantum Hall effect reveals itself through spontaneous symmetry breaking at
the “edge” of the ϑ vacuum. This unexpected feature of the sigma model in two dimensions
has historically been overlooked. From now onward we recognize the action of (7) as the
critical fixed point action of the quantum Hall state.

3 Disentangling the Bulk and the Edge

3.1 The Matrix Field Variable Q

To disentwine the massless “edge” excitations from the “bulk” excitations we write

Q = ϕ−1Q0ϕ (14)
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where Q0 = T −1
0 �T0 has a fixed value Q0 = � at the edge. The matrix ϕ ∈ SU(M + N)

generally stands for the “fluctuations” about these special boundary conditions. These dis-
tinctly different components of Q are termed the “bulk” component and “edge” component
respectively. They are topologically classified according to

C[Q] = C[Q0] + C[q], q = ϕ−1�ϕ (15)

where C[Q0] is by construction an integer and − 1
2 < C[q] ≤ 1

2 stands for the fractional part
of C[Q]. Notice that for the special case of integer filling fractions ν the action (7) solely
depends on the “edge” component ϕ of Q

Sgap[Q] = Sgap[ϕ−1Q0ϕ] = k

2

∮
dx tr

[
ϕ∂xϕ

−1 + ω

vd

q

]
� + 2πikC[Q0]. (16)

The “bulk” component Q0 gives rise to a trivial phase factor 2πikC[Q0] and can be ignored.

3.2 The ϑ Parameter or σ 0
H

Next, to address the general theory of (4) it is convenient split the mean field parameter
σ 0

H = ν into an integral piece k(ν) and a fractional piece −π < θ(ν) � π according to (see
Figs. 1 and 2)

σ 0
H = ν = k(ν) + θ(ν)

2π
. (17)

Microscopically, i.e. for the electron gas in strong magnetic fields, the quantities k(ν) and
θ(ν) appear as distinctly different contributions from the “edge” and the “bulk” respec-
tively [57]. The mean field parameters g0 = g0(θ(ν)) and ρ = ρ(θ(ν)) are typical “bulk”
quantities that for a given Landau band depend on θ(ν) only. They are symmetric under
θ(ν) ⇔ −θ(ν) which is termed “particle-hole” symmetry.

The split in (17) can easily be understood by considering a system with a “clean” con-
fining edge that is spatially separated from the homogenously distributed disorder in the
interior of the system. This kind of thought experiment has frequently been used in [2, 3]
and here it shows that the integral piece k(ν) typically arises from the “edge” states in the
problem that are unaffected by the disorder whereas θ(ν), like g0(θ(ν)) and ρ(θ(ν)), is
entirely determined by the disorder in the “bulk” of the system.

Fig. 1 The edge part of σ 0
H

with
varying ν, see text
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Fig. 2 The bulk part of σ 0
H

with
varying ν, see text

3.3 Actions for the “Bulk” and the “Edge”

Using these definitions we next split (3) and (4) into a “bulk” part Sbulk and an “edge” part
Sedge as follows

S[Q] = Sbulk[Q] + Sedge[q], (18)

Sbulk[Q] = S̃σ [Q] + πωρ

∫
d2x trQ�, (19)

Sedge[q] = 2πik(ν)C[q] + πωρedge

∮
dx trq�. (20)

Here, S̃σ [Q] denotes the sigma model for the “bulk” of the system

S̃σ [Q] = −g0

8

∫
d2x tr ∂μQ∂μQ + iθ(ν)C[Q]. (21)

By separating the integrals over the “bulk” modes Q0 and “edge” components q or ϕ we
can write

Z =
∫

D[q] eSedge[q]
∫

∂V

D[Q0] eSbulk[ϕ−1Q0 ϕ]. (22)

Here, the subscript ∂V reminds us of the fact that the functional integral over Q0 has to be
performed with fixed boundary conditions Q0 = �. Notice that for integer filling fractions
ν the action Sbulk is zero and (22) stands for the critical theory of the “edge” as it should be.
On the other hand, in the absence of the “edge” component ϕ or q we obtain a theory of
pure “bulk” excitations Sbulk[Q0] with a strictly quantized topological charge C[Q0]. This
theory is precisely in accordance with the semiclassical “instanton picture” of the ϑ angle.

As a final remark, it should be mentioned that the results of this section have a quite
general significance that is independent of condensed matter applications. For example, the
split written in (18) can always be made even though the decomposition of (17) may not
always be physically obvious. The main advantage of the electron gas, therefore, is that the
distinction between the “bulk” and “edge” naturally emerges from the microscopic origins
of the ϑ angle.

3.4 Finite Size Scaling

We are now in a position to introduce finite size scaling ideas for the macroscopic conduc-
tances. For this purpose we take the limit ω = 0 in the action for the “bulk” Sbulk and let the
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infrared be defined by the sample size λ′. Equation (22) can now be written in terms of an
effective theory for the “edge” according to

Z = e−Fb

∫
D[q]eSedge[q]+S̃′

σ [q] (23)

where

e−Fb+S̃′
σ [q] =

∫
∂V

D[Q0]eS̃σ [ϕ−1Q0 ϕ]. (24)

Here, Fb = Fb(θ(ν)) denotes the “bulk” free energy. Notice that the effective action S̃ ′
σ [q] is,

in effect, a measure for the sensitivity of the “bulk” of the system to infinitesimal changes in
the boundary conditions. Emerging from (23) and (24) is therefore the well known “scaling
picture” of Anderson localization where one divides the macroscopic system into an array
of much smaller “blocks” of size λ 	 λ′. Provided the ϕ field obeys the classical equations
of motion one can generally express the effective action S̃ ′

σ [q] as follows

S̃ ′
σ [q] = −1

8
g′(λ)

∫
d2x tr ∂μq∂μq + iθ ′(λ)C[q] (25)

where g′(λ) and θ ′(λ) are the “response” parameters associated with a single block.
They are explicitly given as correlations of the Noether current Jμ = Q0∂μQ0 according
to [50, 52, 53]

g′(λ) = g0 + (g0)
2

8MNλ2

∫
x,x′

〈trJμ(x)Jμ(x ′)〉, (26)

θ ′(λ) = θ(ν) + (g0)
2

8MNλ2

∫
x,x′

〈tr εμνJμ(x)Jν(x
′)�〉 (27)

where the expectations 〈. . . 〉 are with respect to S̃σ [Q0] which is defined for a block of
size λ. Here, g′(λ) stands for the parallel conductance and

σ ′
H (λ) = k(ν) + θ ′(λ)

2π
(28)

denotes the Hall conductance. By considering a sequence of scale sizes λ, 2λ, 4λ etc. then
the results of (26)–(28) essentially tell us how single blocks are being joined together to
form the transport parameters of bigger blocks. This scaling scenario immediately suggests a
generalized Thouless criterion for Anderson localization in the presence of a magnetic field.
More specifically, since exponentially localized electronic levels are insensitive to changes
in the boundary conditions one expects that the response parameters g′(λ) and θ ′(λ) render
exponentially small

g′(λ), θ ′(λ) ∝ exp{−λ/ξ} (29)

with ξ denoting the localization length, provided λ is taken large enough. Under these cir-
cumstances (23)–(24) scale toward the critical “edge” theory of the quantum Hall state, (16),
with σ ′

H = k(ν) + O(e−λ/ξ ) now standing for the robustly quantized Hall conductance, see
Fig. 1.
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Fig. 3 The renormalization
group flow diagram in the g′–σ ′

H
“conductance” plane, along with
the βg = dg′/d lnλ function

along the line σ ′
H

= k + 1
2 , for

different values of M and N . The
results show how instanton
effects alter the perturbative βg

functions depicted by the dashed
lines. (a) Typical behavior for
large values of M , N .
(b) Intermediate behavior that is
likely displayed by the theory
with M = N = 1 or the O(3)

non-linear σ model. (c) Typical
behavior for 0 � M,N < 1, see
text

Since nothing of the argument seems to crucially depend on the number of field com-
ponents M and N , we expect that this scaling picture has a quite general significance for
the theory for all values M,N ≥ 0. Indeed, the explicit results for (26)–(28) obtained from
the instanton calculational technique [20] are all in accordance with the Thouless criterion
and the super universality concept discussed earlier, see Fig. 3. On the other hand, since
the theory is generally inaccessible on the strong coupling side, it is extremely important to
have a simple example where the different aspects of the super universality concept can be
investigated and explored exactly. For this purpose we specialize from now onward to the
large N expansion of the CPN−1 model.

4 Weak Coupling Results at Large N

From (23)–(27) we see that the physics of the ϑ vacuum is in general defined by only
three physical quantities, namely the free energy Fb and the response parameters g′ and θ ′.
These quantities are all defined by the underlying theory of bulk excitations with a strictly
quantized topological charge C[Q0]. This means that the θ(ν) dependence can be expressed
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in terms of a series expansion in “discrete topological sectors” n according to

(λ′)−2 Fb =
∞∑

n=0

φn cosnθ(ν) (30)

and

g′(λ′) = g0 +
∞∑

n=0

ρn cosnθ(ν), (31)

θ ′(λ′) = θ(ν) +
∞∑

n=1

ξn sinnθ(ν). (32)

The φn, ρn and ξn generally stand for functions of g0 and the scale size λ′ alone. As we shall
see in the remainder of this paper, it is precisely this feature of the theory that eventually fa-
cilitates the contact between the weak and strong coupling phases of the large N expansion.
We first briefly recall, in Sects. 4.1 and 4.2 below, some of the results obtained in the weak
coupling instanton phase [20].

4.1 Free Energy

The large N expansion is usually expressed in terms of a re-scaled parameter g0

σ0 = g0/N (33)

such that the perturbative quantum corrections to σ0 are independent of N

σ(λ) = σ0 − 1

2π
lnμλ = − 1

2π
lnλM0. (34)

Here, M0 denotes the dynamically generated mass of the large N expansion

M0 = μe−2πσ0 . (35)

Within the dilute instanton gas approach one usually deals with only the n = 1 term in (30).
Using σ as a shorthand for σ(λ) we cast the standard result for large values of N in the
following general form

(λ′)−1 Fb = −
∫

dλ

λ3
w(σ)WN(σ) cos θ(ν) (36)

where (λ′)2 denotes the area of the system and the functions W(σ) and w(σ) are given by

W(σ) = exp

{
−2πσ + ln 4πσ − γ − 1

2

}
, w(σ) = (2N/π)3/2 /e (37)

with γ ≈ 0.577 the Euler constant. The unspecified integral over the scale size λ in (36)
diverges in the infrared. This notorious drawback dramatically complicates the meaning of
the semiclassical methodology [18, 19, 54, 55]. Within the historical large N analysis, for
example, it was first assumed that instantons do not contribute [35]. Following the sem-
inal critique by Jevicki [56] this conjecture was later abandoned [36, 37]. The different
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approaches to the ϑ vacuum have nevertheless led to an “arena of bloody controversies”
[38] that has not been resolved even to date.

In what follows we shall argue that the results of (37) can only be trusted in the range
λM0 	 1 where one normally expects the perturbative quantum theory to be valid. As one
approaches the strong coupling phase λM0 � 1 the integrant of (36) presumably gets compli-
cated by additional contributions from pairs of instantons and anti-instanton that are difficult
incorporate semiclassically. In Sect. 7 we show how the large N steepest descend methodol-
ogy can be used to shed new light on the matter. We find, in particular, that the general form
of (36) is retained except that the functions W(σ), w(σ) and σ(λ) have a different mean-
ing when λM0 � 1. These extended instanton results are a special case of the more general
statement which says that the coefficients φn in (30) are all finite as λ′ goes to infinity.

Even though the new insights into the traditional infrared problems of instantons are im-
portant, free energy considerations alone do not teach us much about the singularity structure
of the theory as θ(ν) approaches ±π . The lowest order terms in the series of (30) generally
tell us something about the regular part of the free energy which is of secondary interest.

4.2 Observable Theory

To study the low energy dynamics of the ϑ vacuum, in particular the quantum Hall effect,
one must develop a quantum theory of the response parameters g′ and θ ′ in (31) and (32)
which we term the observable theory. The results can in general be expressed as an integral
over scale sizes λ

σ ′(λ′) = σ ′(λ0) +
∫ λ′

λ0

dλ

λ
βσ (σ ′, θ ′), (38)

θ ′(λ′) = θ ′(λ0) +
∫ λ′

λ0

dλ

λ
βθ (σ

′, θ ′) (39)

where σ ′ = g′/N . The β functions extracted from the dilute instanton gas are universal and
can be written in the form

βσ = f (σ ′) − f1(σ
′)WN(σ ′) cos θ ′, (40)

βθ = −g1(σ
′)WN(σ ′) sin θ ′ (41)

where the function W is the same as in (37) and the f , g functions are given by

f (σ ′) = − 1

2πσ ′ ,

f1(σ
′) = 8e−1N(2πN)1/2 σ ′, (42)

g1(σ
′) = 8e−1N(2πN)3/2 (σ ′)2.

In anticipation of our findings in Sect. 7 we can say that the general form of the β functions
in (40) and (41), like the free energy of (36), is retained all the way down to the strong
coupling phase provided one gives a proper meaning to the functions W , f and g. These
generalized instanton results are the lowest order terms in an infinite series that reads

βσ =
∞∑

n=0

β(n)
σ (σ ′) cosnθ ′, (43)
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Fig. 4 Renormalization group
flows in the σ ′–σ ′

H
“conductance” plane according to
the CPN−1 theory with large
values of N , see text

βθ =
∞∑

n=1

β
(n)
θ (σ ′) sinnθ ′. (44)

On the weak coupling side one expects that the convergence of the series is controlled by
instanton factors that are typically of the form

β(n)
σ (σ ),β

(n)
θ (σ ) � WNn(σ ′). (45)

On the strong coupling side we find that the βσ function as a whole goes to zero and the
quantities β

(n)
θ (σ ) in (44) all approach a finite constant in the limit σ ′ → 0. In different

words, the large N expansion is the much sought after example where the concept of ϑ

renormalization can be explored and investigated in the entire range from weak to strong
coupling.

5 CPN−1 Model

5.1 Introduction

In this section we review the various different steps of the large N steepest descend method-
ology of the CPN−1 model [34–37]. The matrix field variable Q ∈ SU(N)/U(N − 1) can be
expressed in terms of a complex vector field zα

Qαβ = 2z∗
αzβ − δαβ (46)

with z∗
αzα = 1. The action is usually taken in 1 + 1 space-time dimension and without mass

terms

S[Q] =
∫

d2x
[−g0

(
∂μz∗

α∂μzα + z∗
α∂μzαz

∗
β∂μzβ

) + σ 0
H εμν∂μz∗

α∂νzα

]
. (47)

Introducing a vector field Aμ one can write

S[Q,Aμ] =
∫

d2x
[−g0|Dμzα|2 + iσ 0

Hεμν∂μAν

]
(48)
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where Dμ = ∂μ + iAμ and the topological charge becomes

C[Aμ] = 1

2π

∫
d2xεμν∂μAν. (49)

Notice that under the shift Aμ → Aμ + iz∗
α∂νzα the Aμ and zα fields decouple and we obtain

the original theory of (47). For the time being we shall ignore the problem of the massless
“edge” excitations and assume, following the historical papers, that Aμ is an unconstrained
free field. We lift the nonlinearity condition z∗

αzα = 1 as usual introducing an auxiliary field
φ(x)

S[Q,Aμ,λ] = S[Q,Aμ] + ig0

∫
d2xφ

(|zα|2 − 1
)
. (50)

The zα vector fields are now free and can be eliminated. This leads to an effective theory in
terms of φ and Aμ fields alone

S[Aμ,φ] = −N

[
tr ln(−D2 + iφ) − iσ0

∫
d2x φ

]
+ iσ 0

H

∫
d2xεμν∂μAν. (51)

We have introduced the quantity σ0 = g0/N as before. Equation (51) has an SU(N) invariant
stationary point iφ(x) = M2

0 . Putting Aμ = 0 we obtain the following expression for the
mass M0 ∫

d2k

(2π)2

1

k2 + M2
0

= σ0. (52)

Introducing an ultraviolet cutoff μ

σ0 = 1

2π
ln

μ

M0
, M0 = ξ−1 = μe−2πσ0 (53)

we obtain the same results as in (33) and (35) extracted from ordinary perturbation theory.
Next, by neglecting the fluctuations in the φ field which are of order N−1, we expand the
theory as a power series in the Aμ field. Assuming Lorentz invariance we obtain the standard
result

N tr ln(−D2
μ + M2

0 ) = N tr ln(−∂2
μ + M2

0 ) + N

48πM2
0

∫
d2xF 2

μν (54)

and the effective action reads

S[Aμ] =
∫

d2x

[
− N

48πM2
0

F 2
μν + iσ 0

H εμν∂μAν

]
. (55)

At this point the historical large N methodology gets complicated. The difficulties are im-
mediately obvious when considering the expression for the free energy

F (σ 0
H ) = − ln

∫
D[Aμ]eS[Aμ] = 12πλ2M2

0

N
(σ 0

H )2 (56)

where

λ2 = βL (57)
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denotes the area in space-time (from now onward we write λ for λ′ whenever conve-
nient). Even though (56) does not display any periodicity in σ 0

H , one nevertheless argues
on heuristic grounds that (56) should be periodic [35–37]. Based on the electrodynamics
“picture” by Coleman [58], for example, one assumes that (56) is only correct in the interval
− 1

2 < σ 0
H ≤ 1

2 . Outside this interval it is energetically favorable for the system to materialize
a pair of “charges” that move in opposite directions to the “edges” of the universe such as
to maximally shield the background “electric field” σ 0

H . Equation (56) should therefore be
expressed in terms of the internally generated “electric field” rather than the bare value σ 0

H .
We will come back to these ideas in Sect. 6

5.2 Bulk and Edge Excitations

Although cleverly designed, Coleman’s ad hoc arguments should not be mistaken for an
exact or complete theory of the ϑ vacuum. To demonstrate that something fundamental is
missing we employ the master formulae for the conductances of Sect. 2. Since the large N

methodology is manifestly SU(N) invariant (there is no spontaneous symmetry breaking)
the insertion of a background matrix field t (x) is immaterial and we immediately obtain the
trivial response

g′(ω) = σ ′
H (ω) = 0 (58)

in the limit ω = 0. This result conflicts with the quantum Hall effect, in particular (13),
indicating that the massless chiral “edge” excitations in the problem have been overlooked.
These edge excitations have disappeared in (55) the reason being that incorrect assumptions
have been made about the order in which the integrals over the Aμ and zα fields in (48) must
be performed.

Guided by the analysis of Sect. 3 we next discuss the subtle modifications in the large
N methodology that are necessary in order to be able to extract the correct low energy
dynamics of the ϑ vacuum.

(1) First, in accordance with (14) we split the vector field zα in “edge” components ϕ and
“bulk” modes ζ according to

zα =
N∑

β=1

ϕαβζβ. (59)

Here, the vector field ζα is constrained by the boundary condition ζα = eiφδα,1 with φ

an arbitrary U(1) gauge.
(2) Equation (59) implies that the topological charge C[Aμ] in (48) and (49) must be split

into integral and fractional pieces. Specifically, we impose the constraint

C[Aμ] = n + C[q], C[q] = 1

16πi

∮
dxμ tr εμνq∂μq∂νq (60)

where n is an arbitrary integer and C[q] the fractional piece associated with the “edge”
component ϕ or q = ϕ−1�ϕ. Introducing an auxiliary field η we incorporate the con-
straint by substituting

iσ 0
H

∫
d2xεμν∂μAν → i(σ 0

H − η)

∫
d2xεμν∂μAν + 2πiη(n + C[q]) (61)

in (48) and (49).
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(3) The steps from (50) to (54) are slightly modified since we only integrate over the “bulk”
components ζα while retaining the “edge” matrix field variable ϕ or q . The results are
summarized by making the following substitution in (54) and (55)

N

48πM2
0

∫
d2xF 2

μν → N

48πM2
0

∫
d2xF 2

μν + δS[q,Aμ]. (62)

Here δS stands for all the higher order terms that are irrelevant. The only term of phys-
ical interest is the small correction term

δS[q,Aμ] = g′(λ)

8

∫
d2x tr ∂μq∂μq, g′(λ) ≈ e−λM0 (63)

that is permitted by the boundary condition imposed on the ζα vector field.

By substituting (61) and (62) in the historical result of (55) we obtain a more complex theory
that besides the Aμ field also depends on the “edge” matrix field variable q as well as the
auxiliary field η and n

S[Aμ,q,η,n] =
∫ [

− N

48πM2
0

F 2
μν + i(σ 0

H − η)εμν∂μAν

]

+ 2πiη(n + C[q]) + δS[q,Aμ]. (64)

At this stage of the analysis several remarks are in order. First of all, it should be mentioned
that the piece δS in (64) really describes the correction terms in a systematic expansion in
large values of N . To see this we re-scale

λ → λ
√

N, Aμ → Aμ/
√

N (65)

while keeping the dimensionless quantities q , η and n unchanged. This removes the factor
N from the leading order result in (64) such that all the N dependence now appears in δS.
For example, the quantity g′(λ) gets replaced by

g′(λ) → g′(
√

Nλ) ≈ e−√
NλM0 (66)

indicating that physically the large N steepest descend methodology describes a systematic
expansion about the strong coupling line g′ = 0 in the g′–σ ′

H conductance plane.
Secondly, from (63) we infer that the natural scaling parameter σ ′(λ) of the large N

theory is given by

σ ′(λ) = g′(λ) ≈ e−λM0 	 1. (67)

This definition is the strong coupling counter part of the weak coupling statement of (33)
and (34). Since (67) does not depend on θ(ν) we will not distinguish, in what follows,
between the observable parameter σ ′(λ) and the renormalized quantity σ(λ) in which the
free energy is generally expressed (see, however, Sect. 7.2.1).

Keeping these remarks in mind we discard, from now onward, the piece δS unless ex-
plicitly stated otherwise. We proceed by eliminating the Aμ field in (64) which is now a free
field. The effective action in terms of field variables η, q and n reads

S[η,q,n] = −12πλ2M2
0

N
(σ 0

H − η)2 + 2πiη(n + C[q]). (68)
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The effective theory of edge excitations is now defined by

Z[q] =
∑

n

∫ ∞

−∞
dηeS[η,q,n]. (69)

Notice that the only difference between (68) and (69) and the original results of (55) and
(56) is the constraint of (60) that separates the integral topological sectors from the fractional
ones. In what follows we shall distinguish between two different strong coupling phases of
the theory, termed the quantum Hall phase (Sect. 6) and the pseudo instanton phase (Sect. 7)
respectively, depending on the value of the dimensionless variable 12πλ2M2

0 /N .

6 Quantum Hall Phase 12πλ2M2
0 /N � 1

By making use of the Poisson summation formula

∑
n

e2πiηn = 1

2π

∑
m

δ(η − m) (70)

we can express (68) and (69) as sum over integers m

Z[q] =
∑
m

exp

{
−12πλ2M2

0

N
(σ 0

H − m)2 + 2πimC[q]
}
. (71)

This sum is rapidly converging in the limit where λ → ∞ while keeping all the other pa-
rameters in the problem fixed. Let us next compare the completely different results that are
obtained depending on the interpretation of the topological charge of the Aμ vector field.

(1) If one assumes, in accordance with the historical large N analysis, that the original Aμ

field is an unconstrained free field then one must integrate the result of (71) over the
range − 1

2 < C[q] ≤ 1
2 . This integral singles out the m = 0 term in the series and the free

energy is exactly same as in (56). We can write

ln〈Z[q]〉 = F (σ 0
H ) = 12πλ2M2

0

N
(σ 0

H )2, (72)

where the brackets 〈. . . 〉 ≡ ∫ 1
2

− 1
2
dC . . . denote the average over the boundary conditions.

(2) If, on the other hand, we fix the boundary conditions on the Aμ field or, as done in the
present investigation, assign an entirely different physical significance to the fractional
piece of the topological charge C[q] then the expression of (71) is evaluated very differ-
ently. Employing the split σ 0

H = ν = θ(ν)

2π
+ k(ν) introduced in (17) and shifting the sum

over m we obtain

Z[q]= e2πik(ν)C[q]Zb[q],

Zb[q]=
∑
m

exp

{
−12πλ2M2

0

N

(
θ(ν)

2π
− m

)2

+ 2πimC[q]
}
.

(73)

The sum in (73) is dominated by the m = 0 term and upon taking the thermodynamic
limit λ → ∞ we obtain

lnZ[q] = −Fb(θ(ν)) + 2πik(ν)C[q] (74)
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Fig. 5 The bulk free energy
Fb/λ2 ∝ θ2(ν) with varying ν,
see text

where Fb now denotes the free energy of the “bulk” which is given by

Fb(θ(ν)) = 3λ2M2
0

πN
θ2(ν) = 12πλ2M2

0

N

(
σ 0

H − k(ν)
)2

. (75)

Remarkably, (74) and (75) display all the interesting physics of the ϑ vacuum that the
historical result of (72) did not give. Unlike (72), for example, the free energy of (75) is
a periodic function of σ 0

H = ν with a sharp “cusp” or first order phase transition at ν =
k + 1

2 , see Fig. 5. Equation (75) is in accordance with Coleman’s original ideas with θ(ν) =
2π(σ 0

H − k(ν)) standing for the internally generated “electric field” and k(ν) the part that
originates from the charges at “edges” of the universe. In addition to this, (74) displays
the quantum Hall effect. The piece 2πik(ν)C[q] is recognized as the action of massless
chiral edge excitations, see (16). The integer k(ν) now stands for the robustly quantized
Hall conductance with sharp transitions occurring at half-integral values of ν, see Fig. 1.

In conclusion, the correct physical interpretation of the large N theory crucially depends
on a correct treatment of the massless “edge” excitations in the problem. By mishandling
these excitations like in (72) one actually looses all the important “bulk” phenomena and,
consequently, one must work very hard in order to retrieve at least some of the physics of the
ϑ angle. The historical papers on the subject did not reveal the quantum Hall effect, how-
ever, nor did they provide a correct physical understanding of issues like the quantization of
topological charge [35–37, 39–44]. We will now proceed and investigate the consequences
of our new findings in more detail.

6.1 Plateau Transitions

First, to discuss the Thouless criterion introduced in Sect. 3.4 we extend the result of (75) to
include the effects of finite size scaling. By expanding the bulk theory Zb to lowest order in
C[q] and making use of (63) we obtain the more general expression

lnZ[q] → −Fb + 2πi

(
k(ν) + θ ′(λ)

2π

)
C[q] − g′(λ)

8

∫
d2x∂μq∂μq (76)

where for θ(ν) ≈ 0 the response parameters are given by

g′(λ) = σ ′(λ) � e−λM0 , θ ′(λ) � e−12πλ2M2
0 /N . (77)

These results are precisely the same as S̃ ′
σ [q] defined in (25). The corrections in (77) are

slightly different from the naive expectations of (29) based on exponential localization. This
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Fig. 6 Finite size scaling of the
Hall conductance σ ′

H
and the

bulk free energy Fb/λ2 with
varying ν. The dark areas at
ν = 1/2, 3/2 etc. indicate the
critical regimes �(ν) ∝ λ−2

where σ ′
H

varies smoothly from
one plateau value to the next.
Similarly, the “cusp” in Fb/λ2 is
smoothed out due to the finite
scale size λ, see text

difference is due to that fact that all the interesting physics of the large N theory, unlike the
electron gas, occurs along the strong coupling line g′(λ) = 0.

Next, to address the quantum Hall plateau transitions we notice that when θ(ν) ap-
proaches ±π the series of (73) is dominated by the terms with m = 0,1 and m = 0,−1
respectively. By expanding the bulk theory Zb to lowest order in C[q] we obtain the same
general expression as in (76) but with the following scaling result for θ ′(λ)

θ ′(λ) = ±2π
e−2X

1 + e−2X
(78)

where ± denotes the sign of θ(ν). The scaling variable X is given by

X = 12πλ2M2
0

N

(
1

2
−

∣∣∣∣θ(ν)

2π

∣∣∣∣
)

. (79)

The quantum Hall plateau transitions therefore display all the characteristics of a continuous
phase transition with a diverging correlation length ξ

X = λ2

2ξ 2
, ξ =

√
N

4
√

3πM0

(
1 −

∣∣∣∣θ(ν)

π

∣∣∣∣
)− 1

2

. (80)

The finite size scaling behavior of the Hall conductance σ ′
H (λ) = k(ν) + θ ′(λ)

2π
and the free

energy Fb with varying values of the filling fraction ν is illustrated in Fig. 6 and will be dis-
cussed further in Sect. 6.3. It is interesting to notice that the scaling results for the quantum
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Fig. 7 The function βθ with
varying θ ′ , see text

Hall plateau transitions are essentially the same as those taken from the free electron gas
[27] and observed in the experiment [28–31].

6.2 ϑ Renormalization

From (67) and (78) we obtain the β functions (see also Fig. 7)

βσ (σ ′) = dσ ′

d lnλ
= σ ′ lnσ ′, (81)

βθ(θ
′) = dθ ′

d lnλ
= θ ′

π

[
2π − |θ ′|] ln

[ |θ ′|
2π − |θ ′|

]
(82)

which are amongst the most important results of this paper. Equations (81) and (82) together
with the weak coupling instanton results of Sect. 4.2 give rise to the renormalization group
flow lines of Fig. 4. We identify two different kinds of strong coupling fixed points, a massive
one at σ ′ = θ ′ = 0 and a critical one at σ ′ = 0 and θ ′ = ±π . Near θ ′ = 0 we have

βσ = βσ (σ ′) = σ ′ lnσ ′, βθ = βθ(θ
′) = 2θ ′ ln |θ ′| (83)

indicating that the Hall conductance is robustly quantized. Near θ ′ = π for σ ′ = 0 we find

d(π − θ ′)
d lnλ

= 2(π − θ ′). (84)

The exponent value 2 is the inverse of the correlation length exponent given by (80) and, at
the same time, a standard result for a first order phase transition in two dimensions.

6.3 Conductance Distributions

A very interesting feature of the large N expansion is that Z[q] near the plateau transition
can be evaluated exactly and not just to lowest orders in a series expansion in C[q]. The exact
result is most conveniently expressed in terms of the Hall conductance σ ′

H (λ) = k(ν)+ θ ′(λ)

2π
.

Let ν ≈ k0 + 1
2 denote the transition regime with k0 an arbitrary integer. We then obtain

Z[q] = e−Fb × {
(1 + k0 − σ ′

H )e2πik0 C[q] + (σ ′
H − k0)e

2πi(k0+1)C[q]} (85)

where

σ ′
H = σ ′

H (λ) = k0 + 1

2
eλ2M2�ν cosh−1(λ2M2�ν), �ν = ν − k0 − 1

2
. (86)
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Notice that (86) varies continuously from one plateau value (k0) to the next (k0 + 1) as the
relative filling fraction �ν varies from negative to positive values, see Fig. 6. On the other
hand, (85) describes this transition in terms of a probability distribution of the quantum Hall
states k0 and k0 + 1 that are represented by the phase factors e2πk0iC[q] and e2π(k0+1)iC[q]

respectively.
In order to see that (85) actually defines a distribution of the fractional part θ ′(λ) of the

Hall conductance we introduce the set of variables

θn = 2π(k0 − k(ν) + n) (87)

with n = 0,1. The bulk part Zb[q] in (85) can now be written as a sum

Zb[q] = e−Fb ×
1∑

n=0

Pn eiθn C[q]. (88)

Here, Pn = Pn(θ
′(λ)) is a normalized weight

1∑
n=0

Pn = 1, (P0, P1) =
(

1 + θ0 − θ ′(λ)

2π
,1 − θ1 − θ ′(λ)

2π

)
(89)

and the expectations are denoted by

〈θk〉 =
1∑

n=0

Pnθ
k
n , 〈θ〉 = θ ′(λ). (90)

These results indicate that the bulk quantity θ ′(λ) is actually broadly distributed in a highly
non-gaussian manner. For example, we can express (88) in terms of a cumulant expansion

lnZb[q] = −Fb + S̃ ′
σ [q] (91)

where

S̃ ′
σ [q] = iθ ′(λ)C[q] − 1

2!ζ
′
2(λ)C 2[q] − i

3!ζ
′
3(λ)C 3[q] + O(C 4). (92)

The higher order cumulants multiplying C 2[q], C 3[q] etc. can all be expressed in terms of
the “averaged” quantity 〈θ〉 = θ ′(λ). For example

ζ ′
2(λ) = 〈θ2〉 − 〈θ〉2 = |θ ′(λ)|(2π − |θ ′(λ)|). (93)

Notice that as one approaches the transition θ ′(λ) → π the “root mean square fluctuation”√
ζ ′

2(λ) becomes equal to the averaged value π . Away from the transition both the averaged
value θ ′(λ) and the higher order cumulants ζ ′(λ) become exponentially small in λ. The large
N expansion is therefore a prototypical example of the broad “mesoscopic conductance
distributions” that are of interest in the quantum theory of metals [59, 60]. Distributions like
(89) do not affect the scaling behavior of the system, however, since this behavior depends
on the “ensemble averaged” quantity θ ′(λ) alone.
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6.4 Twisted Boundary Conditions

In the original papers in the field [8–12] it was already argued on general grounds that de-
localized or extended “bulk” excitations at θ(ν) = ±π must generally exist for all values
M,N ≥ 0. The idea naturally emerges from ’t Hooft’s duality argument that is based on
the response of the system to imposing twisted boundary conditions. The effect of these
boundary conditions is obtained by inserting C[q] = 1

2 in (88). We can write

− lnZb[q] = Fb − ln
1∑

n=0

Pn(θ
′) eiθn/2 = Fb + �F . (94)

The shift �F in the free energy due to twisted boundary conditions can be expressed in
terms of θ ′ defined in (78) and the result is

�F (θ ′) = − ln

(
1 − |θ ′|

π

)
. (95)

As long as θ(ν) is different from ±π the shift �F is exponentially small in the scale size λ

indicating that the system has a mass gap. However, when θ(ν) approaches ±π the response
�F ∝ ln ξ diverges which means that the system now has gapless “bulk” excitations. Notice
that these findings are entirely consistent with all the other ideas and results that have been
discussed so far, in particular Coleman’s picture of dissociating charges at θ(ν) = ±π , the
scaling functions describing the quantum Hall plateau transitions as well as the statistics of
conductance distributions addressed in the previous section.

In a subsequent paper we will embark on the critical correlations of the large N theory
and show that they map onto the one dimensional using model at zero temperature [61].
This is unlike the grassmannian theory with 0 ≤ M,N � 1 where, as well is known, the
transition is a second order one with exponents that vary continuously with varying M and
N [20]. Despite these and many other differences, the basic phenomena of de-localization
and scaling, including the robust quantization of the Hall conductance, are nevertheless the
same.

7 Pseudo Instanton Phase 12πλ2M2
0 /N � 1 and Cross-Over

We have now completed the strong coupling quantum Hall side of the large N expansion.
In this section we embark on the problem of cross-over between the weak coupling in-
stanton phase discussed in Sect. 4 and the strong coupling results of the previous section.
For this purpose we consider (68) and (69) in the regime where the dimensionless quantity
12πλ2M2

0 /N is small. To obtain a rapidly converging series we simply perform the integral
over the auxiliary field η such that the theory be written as sum over integral topological
sectors n

Z[q]= e2πik(ν)C[q]Zb[q],

Zb[q]=
∑

n

exp
{−κ(λ)(n + C[q])2 + iθ(ν)(n + C[q])} ,

(96)

where

κ(λ) = πN

12λ2M2
0

� 1. (97)
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Notice that there exists a large regime in λ where the sum over n is rapidly converging and,
at the same time, the condition for strong coupling λM0 � 1 is satisfied. In terms of the
scaling parameter σ(λ) or σ ′(λ) we can write

e−√
12N/π 	 σ(λ) = σ ′(λ) = e−λM0 	 1. (98)

We term this regime the pseudo instanton phase because (96) defines a trigonometric series
in θ(ν) which is in many ways similar to the one obtained from the semiclassical theory
based on instantons (Sect. 4). By expanding (96) in powers of C[q] we obtain the same
general form as before

lnZb[q] = −Fb + iθ ′ C[q] + · · · . (99)

In what follows we separately consider the free energy Fb (Sect. 7.1) and the observable
theory θ ′ (Sect. 7.2) respectively.

7.1 Free Energy

The free energy can be expressed in the general form of (30)

λ2 Fb = −24M2
0

πN

∞∑
n=0

φn(κ) cosnθ(ν). (100)

Here, the functions φn(κ) to lowest orders in n are computed to be

φ0(κ) = −1

2
κe−2κ + O(e−4κ ),

φ1(κ) = κe−κ + O(e−3κ ), (101)

φ2(κ) = −1

4
κe−2κ + O(e−4κ ).

More generally one finds the dominating behavior φn(κ) � e−nκ for n > 0. By expressing
κ in terms of σ given in (98) one can write this result as φn(κ) � [exp{− π

12 ln2 σ
}]nN . This

behavior is reminiscent of the instanton factors WnN(σ) found in the weak coupling regime
(Sect. 4).

7.1.1 Relation to Quantum Hall Phase

Let us first establish the contact with the quantum Hall phase. For this purpose we go back
to the result of (75) which is the λ = ∞ limit of the free energy. This result can be expanded
in terms of a trigonometric series according to

λ−2 Fb = 3M2
0

πN
θ2(ν) = −24M2

0

πN

∞∑
n=0

φn(0) cosnθ(ν). (102)

The coefficients φn(0) are defined by

φn(0) = − 1

8π

∫ π

−π

ϑ2 cos(nϑ)dϑ = (−1)n+1 1

2n2
, n > 0, (103)
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φ0(0) = − 1

16π

∫ π

−π

ϑ2dϑ = −π2

24
. (104)

It is clear that the coefficients φn(0) in (102) are the κ = 0 limit of the functions φn(κ) in
(100). Equation (102) is retained also if one takes the finite size scaling corrections into
account, see Fig. 6. The only difference is that the coefficients φn(0) in (102) are replaced
by a series in powers of κ . As a typical example of the cross-over between the quantum Hall
and pseudo instanton phases we consider the function φ1(κ). A detailed investigation of this
function in the quantum Hall phase shows that the series expansion in κ is of the form

φ1(κ) = 1

2
+

∞∑
s=1

asκ
2s; κ 	 1 (105)

where the lowest order coefficient a1 in the series is negative. On the other hand, from (102)
we obtain the result for the pseudo instanton phase

φ1(κ) = κe−κ; κ � 1. (106)

From (105) and (106) we infer that φ1(κ) can in general be written as the product of an
algebraic part v1(κ) and an exponential part e−κ

φ1(κ) = v1(κ)e−κ . (107)

For the purpose of illustration we employ the following trial function that satisfies the as-
ymptotic constraints of (105) and (106)

φ1(κ) = 1

2

√
1 + κ2 exp

{−√
1 + κ2 + 1

}
. (108)

This function along with the asymptotic behavior of (105) and (106) is plotted in Fig. 8.
Equation (108) determines the function v1(κ) in (107) to be

v1(κ) = 1

2

√
1 + κ2 exp

{−√
1 + κ2 + 1 + κ

}
. (109)

This function is algebraic in the sense that it smoothly interpolates between v1 = 1
2 for small

κ and v1 ∝ κ for large values of κ .

Fig. 8 The function φ1(κ) with
varying κ , see text
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7.1.2 Relation to Instanton Phase

Like the dilute instanton gas result discussed in Sect. 4.1, the free energy of the pseudo
instanton phase is dominated by the n = 1 term in (100) and (102). Given the general form
of φ1(κ) in the strong coupling phase, (107), it is not difficult to cast this term in the typical
form of the dilute instanton gas. More specifically, let λ′ denote the system size then we can
write the result as an integral over scale λ as follows

(λ′)−2 Fb ≈ −24M2
0

πN
φ1(κ(λ′)) cos θ(ν) = −

∫ λ′

0

dλ

λ3
w(λ)WN(λ) cos θ(ν) (110)

where the functions w and W are given by

w(λ) = 4

(
dv1(κ)

dκ
− v1(κ)

)
, W(λ) = exp

(
− π

12λ2M2
0

)
(111)

with v1(κ) an algebraic function of κ = κ(λ). The contact with the instanton result of (37)
is complete if we express the functions W(λ) and w(λ) in terms of the scaling parameter
σ(λ) = e−λM0 	 1 rather than the scale size λ. The strong coupling expressions for the w(σ)

and W(σ) functions read

w(σ) = 4

(
dv1(κ(σ ))

dκ(σ )
− v1(κ(σ ))

)
, W(σ) = exp

(
− π

12 ln2 σ

)
, σ 	 1 (112)

where κ(σ ) = πN/12 ln2 σ .

7.1.3 Instantons Regained

In conclusion, the large N steepest descend methodology and the semiclassical instanton
methodology are complementary descriptions that together elucidate the complete structure
of the ϑ vacuum. We find, in particular, that semiclassical concepts like the “dilute instanton
gas” and “discrete topological sectors” have a universal significance that extends all the
way down to the strong coupling phase of the large N expansion. By comparing (112)
and (37), for example, one sees that the cross-over between the weak and strong coupling
phases is primarily controlled by a single, N -independent function W(σ). This function
is monotonically decreasing from unity to zero as σ increases from zero to infinity, see
Fig. 9. On the other hand, the results of (109) and (111) clearly show that main task of
the w(σ) function is to correctly describe the cross-over from the pseudo instanton phase
to the strong coupling quantum Hall phase where the factor WN in (110) is close to unity.
Generally speaking, however, the w(σ) function is a 1/N correction relative to W(σ) and
therefore of secondary importance.

The results for the W(σ) function plotted in Fig. 9 furthermore indicate that the semi-
classical theory of instantons described by (37) is only valid in the range σ � 1 or λM0 � 1
as expected. Upon entering the strong coupling phase the functions W(σ) and w(σ) gener-
ally have a different meaning which cannot be obtained from semiclassical arguments alone.
The important conclusion to be drawn from the present analysis is that the thermodynamic
limit of the dilute instanton gas truly exists and is finite.
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Fig. 9 The function W(σ) with
varying σ describing the
cross-over between and the dilute
instanton gas at σ → ∞ and the
quantum Hall phase at σ → 0.
The two different branches are
the weak coupling instanton
result of (37) and the strong
coupling result of (112)
respectively, see text

7.2 Physical Observables

Next, we embark on the observable quantity θ ′ defined in (99). By taking only the lowest
order terms n = 0,±1 in (96) into account we obtain

θ ′(λ) = θ(ν) − 4κ(λ)e−κ(λ) sin θ(ν). (113)

By substituting σ ′ = σ ′(λ) = e−λM0 for κ(λ) we obtain the following renormalization group
equations for the pseudo instanton phase

βσ = dσ ′

d lnλ
= σ ′ lnσ ′, (114)

βθ = dθ ′

d lnλ
= −g1(σ

′)WN(σ ′) sin θ ′ (115)

where the W(σ ′) function is the same as in (112) and

g1(σ
′) = 8

(
πN

12 ln2 σ ′

)[
πN

12 ln2 σ ′ − 1

]
, e−√

12N/π 	 σ ′ 	 1. (116)

7.2.1 Relation to Instanton Phase

These expressions are of the same general form as the instanton results of (40) and (41)
that are valid in the range σ ′ � 1. It is easy to see, for example, that the higher order terms
in (115) are all of the same type as the weak coupling results described in (44) and (45).
Unlike (43), however, our results for the observable σ ′ or the function βσ do not display any
dependence on θ ′. The reason being that in the definition of δS in (63) we have neglected all
the terms that couple the q matrix field and the Aμ vector field. It can be shown that a more
careful definition of the quantity g′ or σ ′ generally leads to the same geometrical series for
the βσ function as in (43) and (45) [61]. In the regime of interest the θ ′ dependent terms
in the βσ function are all insignificant relative to the leading order result of (115), however,
and they do not alter the main conclusions of the present investigation.
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Table 1 Numerical values of
β

(n)
θ (0), see text n β

(n)
θ (0)

1 −2.794

2 −0.633

3 −0.268

4 −0.146
.
.
.

.

.

.

n − 2
πn2

7.2.2 Relation to Quantum Hall Phase

Keeping these remarks in mind we next turn to the renormalization group results obtained
for the quantum Hall phase, (81) and (82). We expand the latter in a trigonometric series
according to

βθ (θ
′) = θ ′

π

[
2π − |θ ′|] ln

[ |θ ′|
2π − |θ ′|

]
=

∞∑
n=1

β
(n)
θ (0) sinnθ ′. (117)

The coefficients β
(n)
θ (0) are finite numbers defined by

β
(n)
θ (0) =

∫ π

−π

dϑ

π
sin(nϑ)βθ (ϑ). (118)

These results clearly show that the instanton functions β
(n)
θ (σ ′) in (44) all have a well defined

strong coupling limit σ ′ = 0. In the same limit we find that all the coefficients β(n)
σ (σ ′) in

(43) are zero as expected.
In Table 1 we list the numerical values of the lowest order coefficients β

(n)
θ (0). By trun-

cating the series in (117) one generally retains the correct fixed point structure of the theory.
The exact exponent value 2 in (84) is expanded in an infinite series according to

2 =
∞∑

n=1

n(−1)nβ
(n)
θ (0). (119)

By keeping only the lowest order term we obtain an approximate exponent value of 2.8
which in all respects is quite reasonable. The renormalization behavior is therefore well
represented if one extends (114) and (115) to include the n = 1 sector of the quantum Hall
phase according to

g1(σ
′) ≈ β

(1)
θ (0) = 2.794 . . . , σ ′ 	 e−√

12N/π . (120)

Notice that the results for the combination g1(σ
′)WN(σ ′) in (115) are quite similar to those

of the quantity φ1(κ) = v1(κ)e−κ of the free energy, (107). Figure 8 illustrates the cross-over
behavior of the present case as well.

8 Summary and Conclusion

In this investigation we have addressed the super universality concept of the ϑ vacuum
in the large N expansion of the CPN−1 model. This has been done in three consecutive
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Table 2 Generalized instanton results for the renormalization group β functions βσ = f (σ ′) −
f1(σ ′)WN(σ ′) cos θ ′ and βθ = −g1(σ ′)WN(σ ′) sin θ ′ describing the entire regime 0 ≤ σ ′ < ∞. An esti-
mate for the function f1(σ ′) in the pseudo instanton phase and the quantum Hall phase is beyond the scope
of the present investigation, see text

Quantum Hall phase Pseudo instanton phase Instanton phase

σ ′ = σ ′(λ) 0 ≤ σ ′ 	 e−√
12N/π e−√

12N/π 	 σ ′ 	 1 1 	 σ ′

W(σ ′) e−π/(12 ln2 σ ′) e−π/(12 ln2 σ ′) 4πe−γ−1/2σe−2πσ ′

f (σ ′) σ ′ lnσ ′ σ ′ lnσ ′ − 1
2π

f1(σ ′) – – 8(2π)1/2e−1N3/2(σ ′)2

g1(σ ′) 2.794 . . . 8( πN

12 ln2 σ ′ )[ πN

12 ln2 σ ′ − 1] 8(2π)3/2e−1N5/2(σ ′)2

steps. First, we study the general consequences of “massless chiral edge excitations” in
the context of the grassmannian SU(M + N)/S(U(M) × U(N)) non linear sigma model.
By separating the fractional topological sectors from the integral ones we obtain a general
theory of massless edge excitations together with the fundamental parameters (“physical
observables” or “conductances”) that define the renormalization behavior of the ϑ vacuum.
Secondly, we explicitly evaluate these parameters employing a revised and adapted version
of the usual large N steepest descend methodology. This leads to a demonstration of the
robust quantization of the Hall conductance along with exact scaling results for the quantum
Hall plateau transitions. Thirdly, we employ the results recently obtained from instantons in
order to bridge the gap between the weak and strong coupling sides of the large N expansion.
The most general way in which the renormalization group β functions can be expressed is
in terms of discrete topological sectors n according to

βσ (σ ′, θ ′) =
∞∑

n=0

β(n)
σ (σ ′) cosnθ ′ ≈ f (σ ′) − f1(σ

′)WN(σ ′) cos θ ′, (121)

βθ(σ
′, θ ′) =

∞∑
n=1

β
(n)
θ (σ ′) sinnθ ′ ≈ −g1(σ

′)WN(σ ′) sin θ ′. (122)

We have shown that by retaining only the lowest order terms in the series the renormaliza-
tion is well represented in the entire range 0 ≤ σ ′ < ∞. In Table 2 we list the generalized
instanton functions W(σ ′), f (σ ′), f1(σ

′) and g1(σ
′) obtained in the three different regimes

that we have considered. These results, together with the exact strong coupling expressions
of (81) and (82), are the justification for the renormalization group flow lines sketched in
Fig. 4.

It should be mentioned that our findings are in complete accordance with the original
work of Jevicki [56] who showed that the large N steepest descend methodology and the
instanton methodology are formally the same. Our results invalidate the historical “large
N picture” of the ϑ vacuum, however, in particular the claims which say that “discrete
topological sectors” do not exist and “instantons” are irrelevant [35–37]. These historical
claims are borne out of a mishandling of the massless chiral edge excitations in the problem,
as well as incorrect assumptions about the order in which the thermodynamic limit and the
large N limit should in general be taken.

Even though the idea of super universality of quantum Hall physics has already been
foreshadowed by the pioneering papers in the field more than two decades ago [8–12], over
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the years this idea has nevertheless been confronted with many incorrect expectations and
conjectures [39–49] that in one way or the other are all related to the historical “large N

picture” of the ϑ angle. There is, for example, the persistent belief in the literature which
says that the theory generally has no gapless excitations, not even at ϑ = π , and the quantum
Hall effect somehow does not truly exist. By demonstrating super universality as done in
the present investigation, we essentially establish a new paradigm for our understanding of
topological issues in quantum field theory in general, and the experiment on the quantum
Hall effect in particular.
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